Login / Signup

Flexible Porous Polydimethylsiloxane/Lead Zirconate Titanate-Based Nanogenerator Enabled by the Dual Effect of Ferroelectricity and Piezoelectricity.

Si Wei MaYou Jun FanHua Yang LiLi SuZhong Lin WangGuang Zhu
Published in: ACS applied materials & interfaces (2018)
Flexible piezoelectric nanogenerators have drawn considerable attention for their wide applications in harvesting ambient mechanical energy. Here, we report a flexible porous nanogenerator (FPNG) based on the dual effect of ferroelectricity and piezoelectricity. The electric output originated from the combination of the above two effects can be constructively added up, resulting in an enhancement of the electric output. With dimensions of 2 × 2 × 0.3 cm3, the FPNG can generate an open-circuit voltage ( Voc) of 29 V and a short-circuit current ( Isc) of 116 nA under a compressive force of 30 N. Besides, the FPNG is applicable to other forms of mechanical stimuli, including twisting and bending. Harvesting energy from a rowing bicycle tire is demonstrated in this report. This work provides a new route to promoting the electric output of piezoelectric nanogenerators.
Keyphrases
  • air pollution
  • solid state
  • working memory
  • particulate matter
  • energy transfer
  • metal organic framework
  • highly efficient