Protective and Pain-Killer Effects of AMC3, a Novel N-Formyl Peptide Receptors (FPRs) Modulator, in Experimental Models of Rheumatoid Arthritis.
Valentina FerraraAlessandra TotiElena LucariniCarmen ParisioMicheli LauraClara CiampiFrancesco MargiottaLetizia CrocettiClaudia VergelliMaria Paola GiovannoniDi Cesare Mannelli LorenzoCarla GhelardiniPublished in: Antioxidants (Basel, Switzerland) (2023)
Rheumatoid arthritis is an autoimmune disorder that causes chronic joint pain, swelling, and movement impairment, resulting from prolonged inflammation-induced cartilage and bone degradation. The pathogenesis of RA, which is still unclear, makes diagnosis and treatment difficult and calls for new therapeutic strategies to cure the disease. Recent research has identified FPRs as a promising druggable target, with AMC3, a novel agonist, showing preclinical efficacy in vitro and in vivo. In vitro, AMC3 (1-30 µM) exhibited significant antioxidant effects in IL-1β (10 ng/mL)-treated chondrocytes for 24 h. AMC3 displayed a protective effect by downregulating the mRNA expression of several pro-inflammatory and pro-algic genes (iNOS, COX-2, and VEGF-A), while upregulating genes essential for structural integrity (MMP-13, ADAMTS-4, and COLIAI). In vivo, AMC3 (10 mg kg -1 ) prevented hypersensitivity and restored postural balance in CFA-injected rats after 14 days. AMC3 attenuated joint alterations, reduced joint inflammatory infiltrate, pannus formation, and cartilage erosion. Chronic AMC3 administration reduced transcriptional changes of genes causing excitotoxicity and pain (EAATs and CCL2) and prevented morphological changes in astrocytes, including cell body hypertrophy, processes length, and thickness, caused by CFA in the spinal cord. This study demonstrates the usefulness of AMC3 and establishes the groundwork for further research.
Keyphrases
- rheumatoid arthritis
- chronic pain
- neuropathic pain
- spinal cord
- oxidative stress
- pain management
- drug induced
- genome wide
- disease activity
- liver injury
- gene expression
- bioinformatics analysis
- extracellular matrix
- spinal cord injury
- cell therapy
- stem cells
- endothelial cells
- ankylosing spondylitis
- bone mineral density
- anti inflammatory
- genome wide identification
- bone marrow
- high glucose
- nitric oxide synthase
- cell migration
- body composition
- mesenchymal stem cells