Login / Signup

Observation and rationalization of nitrogen oxidation enabled only by coupled plasma and catalyst.

Hanyu MaRakesh K SharmaStefan WelzelMauritius C M van de SandenMihalis N TsampasWilliam F Schneider
Published in: Nature communications (2022)
Heterogeneous catalysts coupled with non-thermal plasmas (NTP) are known to achieve reaction yields that exceed the contributions of the individual components. Rationalization of the enhancing potential of catalysts, however, remains challenging because the background contributions from NTP or catalysts are often non-negligible. Here, we first demonstrate platinum (Pt)-catalyzed nitrogen (N 2 ) oxidation in a radio frequency plasma afterglow at conditions at which neither catalyst nor plasma alone produces significant concentrations of nitric oxide (NO). We then develop reactor models based on reduced NTP- and surface-microkinetic mechanisms to identify the features of each that lead to the synergy between NTP and Pt. At experimental conditions, NTP and thermal catalytic NO production are suppressed by radical reactions and high N 2 dissociation barrier, respectively. Pt catalyzes NTP-generated radicals and vibrationally excited molecules to produce NO. The model construction further illustrates that the optimization of productivity and energy efficiency involves tuning of plasma species, catalysts properties, and the reactor configurations to couple plasma and catalysts. These results provide unambiguous evidence of synergism between plasma and catalyst, the origins of that synergy for N 2 oxidation, and a modeling approach to guide material selection and system optimization.
Keyphrases