Experimental Study on a Novel Shear Connection System for FRP-Concrete Hybrid Bridge Girder.
Mateusz RajchelMaciej KulpaTomasz SiwowskiPublished in: Materials (Basel, Switzerland) (2020)
The study presents experimental results of an investigation on a novel shear connection system for hybrid bridge girders composed of laminated composite beams and concrete slabs. The special connector comprised of a steel plate and welded bolts is attached to beam's top flange by adhesive bonding and with a preset torque of nuts. The study's purpose is to check ductility, safety, reliability and robustness of the shear connection before its implementation in the first Polish composite bridge. Three static push-out tests and fatigue test were performed to evaluate the shear connection behavior under static and cyclic loading. The load-slip curves, shear capacity, fatigue strength and failure mechanisms of the novel shear connectors are discussed. The high-slip modulus indicates that the connectors can very efficiently promote the composite action. The ultimate resistance and the fatigue strength obtained from the test was about 12% and 66% higher than the characteristic resistance and the fatigue strength of common headed studs, according to Eurocode 4, respectively. An estimated global safety factor of 3.67 showed the high safety, reliability and robustness of the novel connection system. The study discusses the structural performance of the proposed connection system, demonstrating its technical suitability.