Xanthan-Gum/Pluronic-F-127-Based-Drug-Loaded Polymeric Hydrogels Synthesized by Free Radical Polymerization Technique for Management of Attention-Deficit/Hyperactivity Disorder.
Muhammad SuhailI-Hui ChiuYi-Ru LaiArshad KhanNoorah Saleh Al-SowayanHamid UllahPao-Chu WuPublished in: Gels (Basel, Switzerland) (2023)
Smart and intelligent xanthan gum/pluronic F-127 hydrogels were fabricated for the controlled delivery of atomoxetine HCl. Different parameters such as DSC, TGA, FTIR, XRD, SEM, drug loading, porosity, swelling index, drug release, and kinetics modeling were appraised for the prepared matrices of hydrogels. FTIR confirmed the successful synthesis of the hydrogel, while TGA and DSC analysis indicated that the thermal stability of the reagents was improved after the polymerization technique. SEM revealed the hard surface of the hydrogel, while XRD indicated a reduction in crystallinity of the reagents. High gel fraction was achieved with high incorporated contents of the polymers and the monomer. An increase in porosity, drug loading, swelling, and drug release was observed with the increase in the concentrations of xanthan gum and acrylic acid, whereas Pluronic F-127 showed the opposite effect. A negligible swelling index was shown at pH 1.2 and 4.6 while greater swelling was observed at pH 7.4, indicating a pH-responsive nature of the designed hydrogels. Furthermore, a higher drug release was found at pH 7.4 compared to pH 1.2 and 4.6, respectively. The first kinetics order was followed by the prepared hydrogel formulations. Thus, it is signified from the discussion that smart xanthan gum/pluronic F-127 hydrogels have the potential to control the release of the atomoxetine HCl in the colon for an extended period of time.