Analysis of Epigenetic Modifications During Vegetative and Reproductive Development in Cereals Using Chromatin Immunoprecipitation (ChIP).
Kevin BegcyThomas DresselhausPublished in: Methods in molecular biology (Clifton, N.J.) (2020)
The study of heritable genetic changes that do not implicate alterations in the DNA sequence-epigenetics-represents one of the most prolific and expanding fields in plant biology during the last two decades. With a focus on DNA methylation and histone modifications, recent advances also reported the identification of epigenetic regulatory mechanisms that control reproductive development in cereal crop plants. One of the most powerful methods to selectively study interactions between epigenetic factors or specific proteins bound to genomic DNA regions is called chromatin immunoprecipitation (ChIP). ChIP can be widely used to determine the presence of particular histones with posttranslational modifications at specific genomic regions or whether and where specific DNA-binding proteins including transcription factors interact with candidate target genes. ChIP is also an exciting tool to study and compare chromatin states under normal and stress conditions. Here, we present a detailed step-by-step ChIP assay to investigate epigenetic chromatin marks during vegetative and reproductive development in cereals. However, the method described here can be used for all plant tissues and plant species.