Login / Signup

Light-Driven Molecular Whirligig.

Chuan GaoAndreas Vargas JentzschEmilie MoulinGiuseppone Nicolas
Published in: Journal of the American Chemical Society (2022)
A unidirectional light-driven rotary motor was looped in a figure-of-eight molecule by linking two polymer chains between its stator and rotor parts. By properly tuning the size of these linkers, clockwise rotation of the motor under UV light was shown to create conformationally strained twists between the polymer chains, and in this tensed conformation, the energy stored in the molecular object was sufficient to trigger the reverse rotation of the motor back to its fully relaxed state. The functioning principle of this motorized molecular device appears very similar to that of macroscopic whirligig crafts used by children for fun. In addition, we found that in its out-of-equilibrium tensed state, the fluorescence emission of the molecular motor increased by 500% due to the mechanical constraints imposed by the polymer chains on its conjugated core. Finally, by calculating the apparent thermal energies of activation for the backward rotations at different levels of twisting, we quantitatively determined a lower estimate of the work generated by this rotary motor, from which a torque and a force were extracted, thus answering a long-term open question in this field of research.
Keyphrases
  • single molecule
  • molecular dynamics simulations
  • young adults
  • computed tomography
  • molecular dynamics
  • ionic liquid