Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability.
Takumi SatoShihomi HachiyaNozomi InamuraTatsuhiro EzawaWeiguo ChengKeitaro TawarayaPublished in: Mycorrhiza (2019)
Arbuscular mycorrhizal (AM) fungi increase phosphate (P) uptake by plants. Organic phosphate comprises 30-80% of total P in most agricultural soils. Some plants can utilize organic phosphate by secreting acid phosphatase (ACP) from their roots, especially under low P conditions. Although secretion of ACP from extraradical hyphae of AM fungi has been reported, the specific factors that affect the secretion of ACP are unknown. The objective of the present study was to investigate whether secretion of ACP from extraradical hyphae is induced by low P conditions. First, specimens of Allium fistulosum were either inoculated with the AM fungus Rhizophagus clarus strain CK001 or remained uninoculated and were grown in soil with 0.5 g P2O5 kg-1 soil or without P fertilization using two-compartment pots. Soil solution was collected using mullite ceramic tubes 45 days after sowing. The soil solution was analyzed for ACP activity by using p-nitrophenylphosphate. Second, Ri T-DNA transformed roots (i.e., hairy roots) of Linum usitatissimum inoculated with R. clarus were grown on solid minimal media with two P levels applied (3 and 30 μM P) using two-compartment Petri dishes under in vitro conditions. Hyphal exudates, extraradical hyphae, and hairy roots were collected and analyzed for ACP activity. ACP activity in the soil solution of the hyphal compartment in the A. fistulosum inoculation treatment was higher without P fertilization than with P fertilization. AM colonization also was higher without P fertilization than with P fertilization. In the in vitro two-compartment culture, ACP activity of hyphal exudates and extraradical hyphae were higher under the 3-μM treatment than under the 30-μM treatment. These findings suggest that the secretion of ACP from the extraradical hyphae of R. clarus into the hyphosphere is promoted under low P conditions.