The contribution of beta-amyloid to dementia in Lewy body diseases: a 1-year follow-up study.
Roberta BiundoLuca WeisEleonora FiorenzatoFrancesca PistonesiAnnachiara CagninAlessandra BertoldoMariagiulia AnglaniDiego CecchinAngelo AntoniniPublished in: Brain communications (2021)
Dementia in Lewy Body Diseases (Parkinson's disease and dementia with Lewy Bodies) affects progression of disabilities, quality of life and well-being. Understanding its pathogenetic mechanisms is critical to properly implement disease-modifying strategies. It has been hypothesized that synuclein- and amyloid-pathology act synergistically aggravating cognitive decline in elderly patients but their precise contribution to dementia is debated. In this study, we aimed at exploring if presence of amyloid deposits influences clinical, cognitive and neuroanatomical correlates of mental decline in a cohort of 40 Parkinson's disease patients with normal cognition (n = 5), mild cognitive impairment (n = 22), and dementia (n = 13) as well as in Dementia with Lewy Bodies (n = 10). Patients underwent simultaneous 3 T PET/MRI with [18F]-flutemetamol and were assessed with an extensive baseline motor and neuropsychological examination, which allowed level II diagnosis of mild cognitive impairment and dementia. The role of amyloid positivity on each cognitive domain, and on the rate of conversion to dementia at 1-year follow-up was explored. A Kaplan Meier and the Log Rank (Mantel-Cox) test were used to assess the pairwise differences in time-to-develop dementia in Parkinson's disease patients with and without significant amyloidosis. Furthermore, the presence of an Alzheimer's dementia-like morphological pattern was evaluated using visual and automated assessment of T1-weighted and T2-weighted MRI images. We observed similar percentage of amyloid deposits in Parkinson's disease dementia and dementia with Lewy Bodies cohorts (50% in each group) with an overall prevalence of 34% of significant amyloid depositions in Lewy Body Diseases. PET amyloid positivity was associated with worse global cognition (Montreal Cognitive Assessment and Mini Mental State Examination), executive and language difficulties. At 12-month follow-up, amyloid positive Parkinson's disease patients were more likely to have become demented than those without amyloidosis. Moreover, there was no difference in the presence of an Alzheimer's disease-like atrophy pattern and in vascular load (at Fazekas scale) between Lewy Body Diseases with and without significant amyloid deposits. Our findings suggest that in Lewy Body Diseases, amyloid deposition enhances cognitive deficits, particularly attention-executive and language dysfunctions. However, the large number of patients without significant amyloid deposits among our cognitively impaired patients indicates that synuclein pathology itself plays a critical role in the development of dementia in Lewy Body Diseases.
Keyphrases
- mild cognitive impairment
- cognitive decline
- end stage renal disease
- chronic kidney disease
- ejection fraction
- parkinson disease
- prognostic factors
- peritoneal dialysis
- computed tomography
- magnetic resonance imaging
- cognitive impairment
- mental health
- working memory
- multiple sclerosis
- risk factors
- high throughput
- patient reported outcomes
- deep brain stimulation