Login / Signup

Piezoelectric Activatable Nanozyme-Based Skin Patch for Rapid Wound Disinfection.

Qiang BaiJiancheng ZhangYixin YuChaohui ZhangYujie JiangDongqin YangManhong LiuLina WangFanglin DuNing SuiZhiling Zhu
Published in: ACS applied materials & interfaces (2022)
Nanozymes are promising new-generation antibacterial agents owing to their low cost, high stability, broad-spectrum activity, and minimal antimicrobial resistance. However, the inherent low catalytic activity of nanozymes tends to limit their antibacterial efficacy. Herein, a heterostructure of zinc oxide nanorod@graphdiyne nanosheets (ZnO@GDY NR) with unparallel piezocatalytic enzyme mimic activity is reported, which concurrently possesses intrinsic peroxidase-like activity and strong piezoelectric responses and effectively promotes the decomposition of hydrogen peroxide (H 2 O 2 ) and generation of reactive oxygen species under ultrasound irradiation. Moreover, this piezocatalytic nanozyme exhibits almost 100% antibacterial efficacy against multidrug-resistant pathogens involving methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in vitro and in vivo. In addition, a piezoelectric activatable nanozyme-based skin patch is developed for rapid skin wound disinfections with satisfactory hemocompatibility and cytocompatibility. This work not only sheds light on the development of an innovative piezoelectric activatable nanozyme-based skin patch for rapid wound disinfection but also provides new insights on the engineering of piezocatalytic nanozymes for nanozyme antibacterial therapy.
Keyphrases