Electron-Conductive Metal-Organic Framework, Fe(dhbq)(dhbq = 2,5-Dihydroxy-1,4-benzoquinone): Coexistence of Microporosity and Solid-State Redox Activity.
Kazuki KonKaiji UchidaKentaro FukuShuntaro YamanakaBin WuDaiki YamazuiHiroaki IguchiHiroaki KobayashiYoshiyuki GambeItaru HonmaShinya TakaishiPublished in: ACS applied materials & interfaces (2021)
Redox-active metal-organic frameworks (MOFs) have great potential for use as cathode materials in lithium-ion batteries (LIBs) with large capacities because the organic ligands can undergo multiple-electron redox processes. However, most MOFs are electrical insulators, limiting their application as electrode materials. Here, we report an electron-conductive MOF with a 2,5-dihydroxy-1,4-benzoquinone (dhbq) ligand, Fe(dhbq). This compound had an electrical conductivity of 5 × 10-6 S cm-1 at room temperature due to d-π interactions between the Fe ion and the ligand and the permanent microporosity. Fe(dhbq) had an initial discharge capacity of 264 mA h g-1, corresponding to the two-electron redox process of dhbq.