Efficient and Stable Deep-Blue Fluorescent Organic Light-Emitting Diodes Employing a Sensitizer with Fast Triplet Upconversion.
Dongdong ZhangXiaozeng SongAlexander James GillettBluebell H DrummondSaul T E JonesGuomeng LiHanqing HeMinghan CaiDan CredgingtonLian DuanPublished in: Advanced materials (Deerfield Beach, Fla.) (2020)
Multiple donor-acceptor-type carbazole-benzonitrile derivatives that exhibit thermally activated delayed fluorescence (TADF) are the state of the art in efficiency and stability in sky-blue organic light-emitting diodes. However, such a motif still suffers from low reverse intersystem crossing rates (kRISC ) with emission peaks <470 nm. Here, a weak acceptor of cyanophenyl is adopted to replace the stronger cyano one to construct blue emitters with multiple donors and acceptors. Both linear donor-π-donor and acceptor-π-acceptor structures are observed to facilitate delocalized excited states for enhanced mixing between charge-transfer and locally excited states. Consequently, a high kRISC of 2.36 × 106 s-1 with an emission peak of 456 nm and a maximum external quantum efficiency of 22.8% is achieved. When utilizing this material to sensitize a blue multiple-resonance TADF emitter, the corresponding device simultaneously realizes a maximum external quantum efficiency of 32.5%, CIEy ≈ 0.12, a full width at half maximum of 29 nm, and a T80 (time to 80% of the initial luminance) of > 60 h at an initial luminance of 1000 cd m-2 .