Login / Signup

Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction.

Chun-Ting ChengYue QiYi-Chang WangKevin K ChiYiyin ChungChing OuyangYun-Ru ChenMyung Eun OhXiangpeng ShengYulong TangYun-Ru LiuH Helen LinChing-Ying KuoDustin SchonesChristina M VidalJenny C-Y ChuHung-Jung WangYu-Han ChenKyle M MillerPeiguo ChuYun YenLei JiangHsing-Jien KungDavid K Ann
Published in: Communications biology (2018)
Defective arginine synthesis, due to the silencing of argininosuccinate synthase 1 (ASS1), is a common metabolic vulnerability in cancer, known as arginine auxotrophy. Understanding how arginine depletion kills arginine-auxotrophic cancer cells will facilitate the development of anti-cancer therapeutic strategies. Here we show that depletion of extracellular arginine in arginine-auxotrophic cancer cells causes mitochondrial distress and transcriptional reprogramming. Mechanistically, arginine starvation induces asparagine synthetase (ASNS), depleting these cancer cells of aspartate, and disrupting their malate-aspartate shuttle. Supplementation of aspartate, depletion of mitochondria, and knockdown of ASNS all protect the arginine-starved cells, establishing the causal effects of aspartate depletion and mitochondrial dysfunction on the arginine starvation-induced cell death. Furthermore, dietary arginine restriction reduced tumor growth in a xenograft model of ASS1-deficient breast cancer. Our data challenge the view that ASNS promotes homeostasis, arguing instead that ASNS-induced aspartate depletion promotes cytotoxicity, which can be exploited for anti-cancer therapies.
Keyphrases
  • nitric oxide
  • cell death
  • amino acid
  • gene expression
  • oxidative stress
  • squamous cell carcinoma
  • young adults
  • machine learning
  • climate change
  • cell cycle arrest
  • cell proliferation
  • reactive oxygen species