Genomic Insights into a Colistin-Resistant Uropathogenic Escherichia coli Strain of O23:H4-ST641 Lineage Harboring mcr-1.1 on a Conjugative IncHI2 Plasmid from Egypt.
Azza S ZakariaEva A EdwardNelly M MohamedPublished in: Microorganisms (2021)
The reintroduction of colistin, a last-resort antibiotic for multidrug-resistant pathogens, resulted in the global spread of plasmid-mediated mobile colistin resistance (mcr) genes. Our study investigated the occurrence of colistin resistance among Escherichia coli isolated from patients with urinary tract infections admitted to a teaching hospital in Egypt. Out of 67 isolates, three isolates were colistin-resistant, having a minimum inhibitory concentration of 4 µg/mL and possessing the mcr-1 gene. A double mechanism of colistin resistance was detected; production of mcr-1 along with amino acid substitution in PmrB (E123D and Y358N) and PmrA (G144S). Broth mating experiments inferred that mcr-1 was positioned on conjugative plasmids. Whole-genome sequencing of EC13049 indicated that the isolate belonged to O23:H4-ST641 lineage and to phylogroup D. The mcr-1-bearing plasmid corresponded to IncHI2 type with a notable similarity to other E. coli plasmids previously recovered from Egypt. The unbanned use of colistin in the Egyptian agriculture sector might have created a potential reservoir for the mcr-1 gene in food-producing animals that spread to humans. More proactive regulations must be implemented to prevent further dissemination of this resistance. This is the first characterization of mcr-1-carrying IncHI2:ST4 plasmid recovered from E. coli of a clinical source in Egypt.
Keyphrases
- escherichia coli
- klebsiella pneumoniae
- multidrug resistant
- biofilm formation
- genome wide
- acinetobacter baumannii
- copy number
- amino acid
- risk assessment
- urinary tract infection
- genome wide identification
- crispr cas
- pseudomonas aeruginosa
- transcription factor
- dna methylation
- single molecule
- genetic diversity
- wastewater treatment
- human health
- cell fate
- high speed