Login / Signup

Alpine speciation and morphological innovations: revelations from a species-rich genus in the northern hemisphere.

Yazhou ZhangJianguo ChenHang Sun
Published in: AoB PLANTS (2021)
A large number of studies have attempted to determine the mechanisms driving plant diversity and distribution on a global scale, but the diverse and endemic alpine herbs found in harsh environments, showing adaptive evolution, require more studies. Here, we selected 466 species from the genus Saussurea, one of the northern hemisphere's highest-altitude plant genera with high species richness and striking morphological traits, to explore the mechanisms driving speciation and adaptative evolution. We conducted phylogenetic signals analysis and ancestral character estimation to explore the phylogenetic significance of ecological factors. Moreover, we used spatial simultaneous autoregressive (SAR) error models, modified t-tests and partial regression models to quantify the relative effects of ecological factors and morphological diversity upon diversity and endemism of Saussurea. Phylogenetic analyses reveal that geological influences and climate stability exhibit significant phylogenetic signals and that Saussurea originated at a relatively high elevation. Regression models indicate that geological influences and climatic stability significantly affect the diversity and endemism patterns of Saussurea and its morphological innovations. Moreover, morphological innovations in an area show significant contributions to the local diversity and endemism of Saussurea. We conclude that geological influences (mean altitude and topographic heterogeneity), glacial-interglacial climate stability and phylogenetic conservatism have together promoted the speciation and adaptive evolution of the genus Saussurea. In addition, adaptively morphological innovations of alpine species also promote diversification in local regions. Our findings improve the understanding of the distribution pattern of diversity/endemism and adaptive evolution of alpine specie in the whole northern hemisphere.
Keyphrases
  • climate change
  • single cell
  • genetic diversity