A Polycarboxyl-Decorated FeIII -Based Xerogel-Derived Multifunctional Composite (Fe3 O4 /Fe/C) as an Efficient Electrode Material towards Oxygen Reduction Reaction and Supercapacitor Application.
Bandhana DeviMangili VenkateswaruluHimmat Singh KushwahaAditi HalderRik Rani KonerPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2018)
Low cost, non-noble metal catalysts with a good oxygen reduction reaction (ORR) activity comparable to that of platinum and also having good energy storage properties are highly desirable but challenging. Several challenges are associated with the development of such materials. Herein, we demonstrate a new polycarboxyl-functionalised FeIII -based gel material, synthesised following a solvothermal method and the development of its composite (Fe3 O4 /Fe/C) by annealing at optimised temperature. The developed composite displayed excellent electrocatalytic activity for the oxygen reduction reaction with an onset potential of 0.87 V (vs. RHE) and a current density value of -5 mA cm-2 , which are comparable with commercial 20 wt % Pt/C. In addition, as one of the most desirable properties, the composite exhibits a better methanol tolerance and greater durability than Pt/C. The same material was explored as an energy storage material for supercapacitors, which showed a specific capacitance of 245 F g-1 at a current density of 1 A g-1 . It is expected that this Fe3 O4 /Fe/C composite with a disordered graphitised carbon matrix will pave a horizon for developing energy conversion and energy storage devices.