Login / Signup

NIR-Triggered Multi-Mode Antitumor Therapy Based on Bi2 Se3 /Au Heterostructure with Enhanced Efficacy.

Chunzheng YangMengyu ChangMeng YuanFan JiangBinbin DingYajie ZhaoPeipei DangZiyong ChengAbdulaziz A Al KheraifPing'an MaJun Lin
Published in: Small (Weinheim an der Bergstrasse, Germany) (2021)
Of all the reaction oxygen species (ROS) therapeutic strategies, NIR light-induced photocatalytic therapy (PCT) based on semiconductor nanomaterials has attracted increasing attention. However, the photocatalysts suffer from rapid recombination of electron-hole pairs due to the narrow band gaps, which are greatly restricted in PCT application. Herein, Bi2 Se3 /Au heterostructured photocatalysts are fabricated to solve the problems by introducing Au nanoparticles (NPs) in situ on the surface of the hollow mesoporous structured Bi2 Se3 . Owing to the lower work function of Au NPs, the photo-induced electrons are easier to transfer and assemble on their surfaces, resulting in the increased separation of the electron-hole pairs with efficient ROS generation. Besides, Bi2 Se3 /Au heterostructures also enhance the photothermal efficiency due to the effective orbital overlaps with accelerated electron migrations according to density functional theory calculations. Moreover, the PLGA-PEG and the doxorubicin (DOX) are introduced for photothermal-triggered drug release in the system. The Bi2 Se3 /Au heterostructures also displays excellent infrared thermal (IRT) and computed tomography (CT) dual-modal imaging property for promising cancer diagnosis. Collectively, Bi2 Se3 /Au@PLGA-PEG-DOX exhibits prominent tumor inhibition effect based on synchronous PTT, PCT and chemotherapy triggered by NIR light for efficient antitumor treatment.
Keyphrases