Determination of Drying Patterns of Radish Slabs under Different Drying Methods Using Hyperspectral Imaging Coupled with Multivariate Analysis.
Dongyoung LeeSantosh LohumiByoung-Kwan ChoSeung Hyun LeeHyunmo JungPublished in: Foods (Basel, Switzerland) (2020)
Drying kinetics and the moisture distribution map of radish slabs under different drying methods (hot-air drying (HAD), microwave drying (MD), and hot-air and microwave combination drying (HMCD)) were determined and visualized by hyperspectral image (HSI) processing coupled with a partial least square regression (PLSR)-variable importance in projection (VIP) model, respectively. Page model was the most suitable in describing the experimental moisture loss data of radish slabs regardless of the drying method. Dielectric properties (DP, ε ) of radish slices decreased with the decrease in moisture content (MC) during MD, and the penetration depth of microwaves in radish was between 0.81 and 1.15 cm. The PLSR-VIP model developed with 38 optimal variables could result in the high prediction accuracies for both the calibration ( R c a l 2 = 0.967 and RMSEC = 4.32 % ) and validation ( R v a l 2 = 0.962 and RMSEC = 4.45 % ). In visualized drying patterns, the radish slabs dried by HAD had a higher moisture content at the center than at the edges; however, the samples dried by MD contained higher moisture content at the edges. The nearly uniform drying pattern of radish slabs under HMCD was observed in hyperspectral images. Drying uniformity of radish slabs could be improved by the combination drying method, which significantly reduces drying time.