Observation of Boyer-Wolf Gaussian modes.
Konrad TschernigDavid GuacanemeOussama MhibikIvan DivlianskyMiguel A BandresPublished in: Nature communications (2024)
Stable laser resonators support three fundamental families of transverse modes: the Hermite, Laguerre, and Ince Gaussian modes. These modes are crucial for understanding complex resonators, beam propagation, and structured light. We experimentally observe a new family of fundamental laser modes in stable resonators: Boyer-Wolf Gaussian modes. By studying the isomorphism between laser cavities and quadratic Hamiltonians, we design a laser resonator equivalent to a quantum two-dimensional anisotropic harmonic oscillator with a 2:1 frequency ratio. The generated Boyer-Wolf Gaussian modes exhibit a parabolic structure and show remarkable agreement with our theoretical predictions. These modes are also eigenmodes of a 2:1 anisotropic gradient refractive index medium, suggesting their presence in any physical system with a 2:1 anisotropic quadratic potential. We identify a transition connecting Boyer-Wolf Gaussian modes to Weber nondiffractive parabolic beams. These new modes are foundational for structured light, and open exciting possibilities for applications in laser micromachining, particle micromanipulation, and optical communications.