North American April tornado occurrences linked to global sea surface temperature anomalies.
Jung-Eun ChuAxel TimmermannJune-Yi LeePublished in: Science advances (2019)
Annual tornado occurrences over North America display large interannual variability and a statistical linkage to sea surface temperature (SST) anomalies. However, the underlying physical mechanisms for this connection and its modulation in a rapidly varying seasonal environment still remain elusive. Using tornado data over the United States from 1954 to 2016 in combination with SST-forced atmospheric general circulation models, we show a robust dynamical linkage between global SST conditions in April, the emergence of the Pacific-North American teleconnection pattern (PNA), and the year-to-year tornado activity in the Southern Great Plains (SGP) region of the United States. Contrasting previous studies, we find that only in April SST-driven atmospheric circulation anomalies can effectively control the northward moisture-laden flow from the Gulf of Mexico, boosting low-level moisture flux convergence over the SGP. These strong large-scale connections are absent in other months because of the strong seasonality of the PNA and background moisture conditions.