Login / Signup

Vibrational Damping Reveals Vibronic Coupling in Thermally Activated Delayed Fluorescence Materials.

Matthias HempeNadzeya A KukhtaAndrew DanosMark A FoxAndrei S BatsanovAndrew P MonkmanMartin R Bryce
Published in: Chemistry of materials : a publication of the American Chemical Society (2021)
We investigate a series of D-A molecules consisting of spiro[acridan-9,9'-fluorene] as the donor and 2-phenylenepyrimidine as the acceptor. In two of the materials, a spiro center effectively electronically isolates the D unit from (consequently) optically innocent yet structurally influential adamantyl side groups. In a third material, adamantyl groups attached directly to the acceptor strongly influence the electronic properties. Steady-state and time-resolved photophysical studies in solution, Zeonex polymer matrix, and neat films reveal that the substituents impact the efficiency of vibronic coupling between singlet and triplet states relevant to reverse intersystem crossing (rISC) and thermally activated delayed fluorescence (TADF), without significantly changing the singlet-triplet gap in the materials. The adamantyl groups serve to raise the segmental mass and inertia, thereby damping intramolecular motions (both vibrational and rotational). This substitution pattern reveals the role of large-amplitude (primarily D-A dihedral angle rocking) motions on reverse intersystem crossing (rISC), as well as smaller contributions from low-amplitude or dampened vibrations in solid state. We demonstrate that rISC still occurs when the high-amplitude motions are suppressed in Zeonex and discuss various vibronic coupling scenarios that point to an underappreciated role of intersegmental motions that persist in rigid solids. Our results underline the complexity of vibronic couplings in the mediation of rISC and provide a synthetic tool to enable future investigations of vibronic coupling through selective mechanical dampening with no impact on electronic systems.
Keyphrases
  • energy transfer
  • room temperature
  • solid state
  • quantum dots
  • resting state
  • climate change
  • functional connectivity
  • ionic liquid
  • dna methylation
  • current status
  • solar cells