Thorn-like TiO2 nanoarrays with broad spectrum antimicrobial activity through physical puncture and photocatalytic action.
Eun-Ju KimMingi ChoiHyeon Yeong ParkJi Young HwangHyung-Eun KimSeok Won HongJaesang LeeKijung YongWooyul KimPublished in: Scientific reports (2019)
To overcome the conventional limitation of TiO2 disinfection being ineffective under light-free conditions, TiO2 nanowire films (TNWs) were prepared and applied to bacterial disinfection under dark and UV illumination. TNW exhibited much higher antibacterial efficiencies against Escherichia coli (E. coli) under dark and UV illumination conditions compared to TiO2 nanoparticle film (TNP) which was almost inactive in the dark, highlighting the additional contribution of the physical interaction between bacterial membrane and NWs. Such a physical contact-based antibacterial activity was related to the NW geometry such as diameter, length, and density. The combined role of physical puncture and photocatalytic action in the mechanism underlying higher bactericidal effect of TNW was systematically examined by TEM, SEM, FTIR, XPS, and potassium ion release analyses. Moreover, TNW revealed antimicrobial activities in a broad spectrum of microorganisms including Staphylococcus aureus and MS2 bacteriophage, antibiofilm properties, and good material stability. Overall, we expect that the free-standing and antimicrobial TNW is a promising agent for water disinfection and biomedical applications in the dark and/or UV illumination.
Keyphrases
- visible light
- staphylococcus aureus
- escherichia coli
- physical activity
- drinking water
- mental health
- quantum dots
- room temperature
- reduced graphene oxide
- multiple sclerosis
- biofilm formation
- mass spectrometry
- highly efficient
- single cell
- aqueous solution
- optical coherence tomography
- pseudomonas aeruginosa
- candida albicans