Login / Signup

A two-enzyme system in an amorphous metal-organic framework for the synthesis of D-phenyllactic acid.

Yifeng WangXiaolong SunJiahuan HuQing GuoPing ZhangXi LuoBaoxing ShenYongqian Fu
Published in: Journal of materials chemistry. B (2023)
In this study, we synthesized an amorphous metal-organic framework by adjusting the concentration of precursors, and established a two-enzyme system consisting of lactate dehydrogenase (LDH) and glucose dehydrogenase (GDH), which successfully achieved coenzyme recycling, and applied it to the synthesis of D-phenyllactic acid (D-PLA). The prepared two-enzyme-MOF hybrid material was characterized using XRD, SEM/EDS, XPS, FT-IR, TGA, CLSM, etc. In addition, reaction kinetic studies indicated that the MOF-encapsulated two-enzyme system exhibited faster initial reaction velocities than free enzymes due to its amorphous ZIF-generated mesoporous structure. Furthermore, the pH stability and temperature stability of the biocatalyst were evaluated, and the results indicated a significant improvement compared to the free enzymes. Moreover, the amorphous structure of the mesopores still maintained the shielding effect and protected the enzyme structure from damage by proteinase K and organic solvents. Finally, the remaining activity of the biocatalyst for the synthesis of D-PLA reached 77% after 6 cycles of use, and the coenzyme regeneration still maintained at 63%, while the biocatalyst also retained 70% and 68% residual activity for the synthesis of D-PLA after 12 days of storage at 4 °C and 25 °C, respectively. This study provides a reference for the design of MOF-based multi-enzyme biocatalysts.
Keyphrases
  • metal organic framework
  • room temperature
  • stem cells
  • oxidative stress
  • type diabetes
  • metabolic syndrome
  • insulin resistance
  • ionic liquid
  • blood glucose