Login / Signup

Isoxazole Strategy for the Synthesis of 2,2'-Bipyridine Ligands: Symmetrical and Unsymmetrical 6,6'-Binicotinates, 2,2'-Bipyridine-5-carboxylates, and Their Metal Complexes.

Ekaterina E GalenkoMikhail S NovikovFiruza M ShakirovaJulia R ShakirovaIlya V KornyakovVladimir A BodunovAlexander F Khlebnikov
Published in: The Journal of organic chemistry (2019)
An effective strategy was developed for the synthesis of new 2,2'-bipyridine ligands, symmetrical and unsymmetrical 6,6'-binicotinates, and 2,2'-bipyridine-5-carboxylates, from 4-propargylisoxazoles. The synthesis of symmetrical 2,2'-disubstituted 6,6'-binicotinates was achieved using the Eglinton reaction of 5-methoxy-4-(prop-2-yn-1-yl)isoxazoles with Cu(OAc)2, followed by Fe(NTf2)2/Au(NTf2) tBuXPhos-catalyzed isomerization of the so-formed mixture of isoxazole/azirine-substituted biacetylenic intermediates. Unsymmetrical 2,2'-disubstituted 6,6'-binicotinates were prepared via a copper-free Sonogashira coupling of 5-methoxy-4-(prop-2-yn-1-yl)isoxazoles with 6-bromonicotinates to give methyl 6-(3-(5-methoxyisoxazol-4-yl)prop-1-ynyl)pyridine-3-carboxylates, followed by a transformation of the propargylisoxazole moiety of the adduct into the pyridine fragment under Fe(II)/Au(I) relay catalysis conditions. 6-(Pyrid-2-yl)nicotinates were synthesized by a Stille-type coupling of 2-(tributylstannyl)pyridine with 6-bromonicotinates. Several cyclopalladated complexes of a new series of 6,6'-binicotinates and 2,2'-bipyridine-5-carboxylates and the homoleptic Cu(I) complex were synthesized in high yields.
Keyphrases
  • room temperature
  • metal organic framework
  • aqueous solution
  • visible light
  • sensitive detection
  • reduced graphene oxide
  • oxide nanoparticles
  • electron transfer