Login / Signup

Biphasic Computational Fluid Dynamics Modelling of the Mixture in an Agricultural Sprayer Tank.

Jorge BadulesMariano VidalAntonio BonéEmilio GilFrancisco Javier García-Ramos
Published in: Molecules (Basel, Switzerland) (2020)
Agitation inside agricultural sprayer tanks can be studied while using an international standard procedure, based on obtaining internal samples of liquid. However, in practice, this test is not easy to perform. Herein, we propose the explicit study of the mixing procedure with biphasic computer simulations using Computational Fluid Dynamics (CFD). An experimental test was performed on a 3000 L tank of a commercial air-assisted sprayer, with two different agitation system configurations, in order to compare the results of several theoretical physical models of biphasic flows for CFD, both Eulerian and Lagrangian. From the analysis of these theoretical models, we conclude that the Volume of Fluid model is not viable and the Discrete Phase Model produces erroneous results, while the Eulerian and Mixture models can both be useful. However, the results obtained suggest that complex streams generated by real-world agitation systems produce more errors in calculations. Both models can be conducted in the design phase, prior to the implementation of the machine. In addition, the computer simulations allow for researchers to analyse the mixing process in detail, making it possible to evaluate the efficiency of an agitation system according to the time that is required to reach mixture homogeneity.
Keyphrases
  • molecular dynamics
  • healthcare
  • deep learning
  • primary care
  • risk assessment
  • climate change
  • heavy metals
  • physical activity
  • quality improvement
  • density functional theory
  • molecular dynamics simulations