Torsion-Induced Nonradiative Relaxation of the Singlet Excited State of meso-Thienyl Bodipy and Charge Separation, Charge Recombination-Induced Intersystem Crossing in Its Compact Electron Donor/Acceptor Dyads.
Yu DongMaria TaddeiSandra DoriaLaura BussottiJianzhang ZhaoGloria MazzoneMariangela Di DonatoPublished in: The journal of physical chemistry. B (2021)
We prepared a series of meso-thienyl boron-dipyrromethene (Bodipy) derivatives to investigate the spin-orbit charge transfer intersystem crossing (SOCT-ISC). The photophysical properties of the compounds were studied by steady-state and femtosecond/nanosecond transient absorption spectroscopy, as well as density functional theory (DFT) computations. Different from the meso-phenyl Bodipy analogues, the meso-thienyl Bodipy are weakly fluorescent. Based on femtosecond transient absorption and DFT computations, we propose that the torsion of the thienyl group and the distortion of the Bodipy core (19.7 ps) in the S1 state lead to a conical intersection on the potential energy surface as an efficient nonradiative decay channel (408 ps), which is responsible for the observed weak fluorescence as compared to the meso-phenyl analogue. The increased fluorescence quantum yield (from 5.5 to 14.5%) in viscous solvents supports this hypothesis. With the electron donor 4'-hydroxylphenyl moiety attached to the meso-thienyl unit, the fast charge separation (CS, 15.3 ps) and charge recombination (CR, 238 ps) processes outcompete the torsion-induced nonradiative decay and induce fast ISC through the SOCT-ISC mechanism. The triplet quantum yield of the electron donor/acceptor dyad is highly dependent on solvent polarity (ΦT = 1.9-45%), which supports the SOCT-ISC mechanism, and the triplet-state lifetime is up to 247.3 μs. Using the electron donor-acceptor dyad showing SOCT-ISC as a triplet photosensitizer, efficient triplet-triplet annihilation (TTA) upconversion was observed with a quantum yield of up to 6.0%.
Keyphrases
- energy transfer
- solar cells
- density functional theory
- quantum dots
- living cells
- fluorescent probe
- molecular dynamics
- high glucose
- single molecule
- diabetic rats
- molecular docking
- dna damage
- photodynamic therapy
- drug induced
- high resolution
- oxidative stress
- climate change
- electron microscopy
- dna repair
- risk assessment
- mass spectrometry