Login / Signup

Simultaneously Altering the Energy Release and Promoting the Adhesive Force of an Electrophoretic Energetic Film with a Fluoropolymer.

Yanjun YinYue DongMingling LiZili Ma
Published in: Langmuir : the ACS journal of surfaces and colloids (2022)
Energetic coatings have attracted a great deal of interest with respect to their compatibility and high energy and power density. However, their preparation by effective and inexpensive methods remains a challenge. In this work, electrophoretic deposition was investigated for the deposition of an Al/CuO thermite coating as a typical facile effective and controllable method. Given the poor adhesion of the deposited film and the native inert Al 2 O 3 shell on Al limiting energy output, further treatment was conducted by soaking in a Nafion solution, which not only acted as a fluoropolymer binder but also introduced a strong F oxidizer. It is interesting to note that the adhesion level of Al/CuO films was improved greatly from 1B to 4B, which was attributed to Nafion organic network film formation, like a fishing net covering the loose particles in the film. Combustion and energy release were analyzed using a high-speed camera and a differential scanning calorimeter. A combustion rate of ≤3.3 m/s and a heat release of 2429 J/g for Al/NFs/CuO are far superior to those of pristine Al/CuO (1.3 m/s and 841 J/g, respectively). The results show that the excellent combustion and heat release properties of the energetic film system are facilitated by the good combustion-supporting properties of organic molecules and the increase in the film density after organic treatment. The prepared Al/NFs/CuO film was also employed as ignition material to fire B-KNO 3 explosive successfully. This study provides a new way to prepare organic-inorganic hybrid energetic films, simultaneously altering the energy release and enhancing the adhesive force. In addition, the Al/NFs/CuO coating also showed considerable potential as an ignition material in microignitors.
Keyphrases