Login / Signup

Biodegradable Hypericin-Containing Nanoparticles for Necrosis Targeting and Fluorescence Imaging.

Xiang-Jun HanOlena TaratulaOlena R TaratulaKe XuAnna St LorenzAbraham MosesYounes JahangiriGuibo YuKhashayar Farsad
Published in: Molecular pharmaceutics (2020)
Necrosis targeting and imaging has significant implications for evaluating tumor growth, therapeutic response, and delivery of therapeutics to perinecrotic tumor zones. Hypericin is a hydrophobic molecule with high necrosis affinity and fluorescence imaging properties. To date, the safe and effective delivery of hypericin to areas of necrosis in vivo remains a challenge because of its incompatible biophysical properties. To address this issue, we have developed a biodegradable nanoparticle (Hyp-NP) for delivery of hypericin to tumors for necrosis targeting and fluorescence imaging. The nanoparticle was developed using methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) and hypericin by a modified solvent evaporation technique. The size of Hyp-NP was 19.0 ± 1.8 nm from cryo-TEM and 37.3 ± 0.7 nm from dynamic light-scattering analysis with a polydispersity index of 0.15 ± 0.01. The encapsulation efficiency of hypericin was 95.05% w/w by UV-vis absorption. After storage for 30 days, 91.4% hypericin was retained in Hyp-NP with nearly no change in hydrodynamic size, representing nanoparticle stability. In an ovarian cancer cell line, Hyp-NP demonstrated cellular internalization with intracellular cytoplasmic localization and preserved fluorescence and necrosis affinity. In a mouse subcutaneous tumor model, tumor accumulation was noted at 8 h postinjection, with near-complete clearance at 96 h postinjection. Hyp-NP was shown to be tightly localized within necrotic tumor zones. Histological analysis of harvested organs demonstrated no gross abnormalities, and in vitro, no hemolysis was observed. This proof-of-concept study demonstrates the potential clinical applications of Hyp-NP for necrosis targeting.
Keyphrases
  • fluorescence imaging
  • photodynamic therapy
  • cancer therapy
  • high resolution
  • drug delivery
  • small molecule
  • single molecule
  • children with cerebral palsy
  • quantum dots