Login / Signup

Ethanol-water motifs-A re-interpretation of the double-difference pair distribution functions of aqueous iron oxide nanoparticle dispersions.

Sabrina L J ThomäMirijam Zobel
Published in: The Journal of chemical physics (2023)
In dispersion, nanoparticles can interact with the surrounding dispersion medium, such that an interfacial region with a structure differing from that of the bulk exists. Distinct nanoparticulate surfaces induce specific degrees of interfacial phenomena, and the availability of surface atoms is a crucial prerequisite for interfacial restructuring. Here, we investigate the nanoparticle-water interface of 0.5-10 wt. % aqueous iron oxide nanoparticle dispersions of 6 nm diameter in the presence of 6 vol. % ethanol with x-ray absorption spectroscopy (XAS) and atomic pair distribution function (PDF) analysis. The absence of surface hydroxyl-groups in XAS spectra is in accordance with the double-difference PDF (dd-PDF) analysis, due to a fully covered surface from the capping agent. The previously observed dd-PDF signal is not stemming from a hydration shell, as postulated in Thomä et al. [Nat Commun. 10, 995 (2019)], but from the residual traces of ethanol from nanoparticle purification. With this article, we provide an insight into the arrangement of EtOH solutes in water at low concentration.
Keyphrases