Login / Signup

Deterministic control of ferroelectric polarization by ultrafast laser pulses.

Peng ChenCharles PaillardHong Jian ZhaoJorge ÍñiguezLaurent Bellaiche
Published in: Nature communications (2022)
Ultrafast light-matter interactions present a promising route to control ferroelectric polarization at room temperature, which is an exciting idea for designing novel ferroelectric-based devices. One emergent light-induced technique for controlling polarization consists in anharmonically driving a high-frequency phonon mode through its coupling to the polarization. A step towards such control has been recently accomplished, but the polarization has been reported to be only partially reversed and for a short lapse of time. Such transient partial reversal is not currently understood, and it is presently unclear if full control of polarization, by, e.g., fully reversing it or even making it adopt different directions (thus inducing structural phase transitions), can be achieved by activating the high-frequency phonon mode via terahertz pulse stimuli. Here, by means of realistic simulations of a prototypical ferroelectric, we reveal and explain (1) why a transient partial reversal has been observed, and (2) how to deterministically control the ferroelectric polarization thanks to these stimuli. Such results can provide guidance for realizing original ultrafast optoferroic devices.
Keyphrases
  • high frequency
  • room temperature
  • transcranial magnetic stimulation
  • signaling pathway
  • ionic liquid
  • genome wide
  • single cell
  • energy transfer
  • mass spectrometry
  • quantum dots