Login / Signup

Micropatterned Cell Orientation of Cyanobacterial Liquid-Crystalline Hydrogels.

Saranyoo SornkamnerdMaiko K OkajimaKazuaki MatsumuraTatsuo Kaneko
Published in: ACS applied materials & interfaces (2018)
Control of cell extension direction is crucial for the regeneration of tissues, which are generally composed of oriented molecules. The scaffolds of highly oriented liquid crystalline polymer chains were fabricated by casting cyanobacterial mega-saccharides, sacran, on parallel-aligned micrometer bars of polystyrene (PS). Polarized microscopy revealed that the orientation was in transverse direction to the longitudinal axes of the PS bars. Swelling behavior of the micropatterned hydrogels was dependent on the distance between the PS bars. The mechanical properties of these scaffolds were dependent on the structural orientation; additionally, the Young's moduli in the transverse direction were higher than those in the parallel direction to the major axes of the PS bars. Further, fibroblast L929 cells were cultivated on the oriented scaffolds to be aligned along the orientation axis. L929 cells cultured on these scaffolds exhibited uniaxial elongation.
Keyphrases