The energy of muscle contraction. IV. Greater mass of larger muscles decreases contraction efficiency.
Stephanie A RossJames M WakelingPublished in: Journal of the Royal Society, Interface (2021)
While skeletal muscle mass has been shown to decrease mass-specific mechanical work per cycle, it is not yet known how muscle mass alters contraction efficiency. In this study, we examined the effect of muscle mass on mass-specific metabolic cost and efficiency during cyclic contractions in simulated muscles of different sizes. We additionally explored how tendon and its stiffness alters the effects of muscle mass on mass-specific work, mass-specific metabolic cost and efficiency across different muscle sizes. To examine contraction efficiency, we estimated the metabolic cost of the cycles using established cost models. We found that for motor contractions in which the muscle was primarily active during shortening, greater muscle mass resulted in lower contraction efficiency, primarily due to lower mass-specific mechanical work per cycle. The addition of a tendon in series with the mass-enhanced muscle model improved the mass-specific work and efficiency per cycle with greater mass for motor contractions, particularly with a shorter excitation duty cycle, despite higher predicted metabolic cost. The results of this study indicate that muscle mass is an important determinant of whole muscle contraction efficiency.