The evaluation of the supplementation of vitamin A, beta-carotene, and oxidized beta-carotene in prepubertal gilts.
Sarah K ElefsonLaura L GreinerPublished in: Journal of animal science (2023)
Finishing pigs (N = 224; 28.66 ± 1.90 kg bodyweight) were randomly assigned across 56 pens of either four barrows or gilts, and assigned to one of four diets: control (7,656 IU vitamin A/kg), control supplemented with vitamin A (4.36 ppm, Rovimix A 1000, DSM, Parsippany, NJ, US), control supplemented with beta-carotene (163.28 ppm, Rovimix β-Carotene 10%, DSM, Parsippany, NJ, US), or control supplemented with oxidized beta-carotene (40 ppm; 10% active ingredient, Avivagen, Ottawa, ON, Canada). Pigs and feeder weights were obtained at the start of the study (d 0), and end of each phase (d 21, 42, and 63). A subset of gilts had a blood sample taken via jugular venipuncture on d 0, a blood sample and vaccinations of Lawsonia intracellularis and porcine circovirus type 2 on d 18, a blood sample and booster vaccination of porcine circovirus type 2 on d 39, a blood sample on day 60, and a final blood sample on day 63. Gilts were euthanized at the end of the study to obtain a liver (entire right lobe) and a jejunum sample (15.24 cm at 10% of length). Additionally, the second and fourth right anterior mammary were collected to assess anterior mammary tissues. Data were analyzed in SAS 9.4 (Statistical Analysis System, Cary, NC) via GLIMMIX procedure. Oxidized beta-carotene supplementation increased (P = 0.02) average daily gain across phases over vitamin A supplementation, although there were no differences (P = 0.18) in the body weight of pigs. There was no effect (P > 0.05) of diet on plasma or hepatic retinol, IgG or IgM levels, or immune cell presence in developing mammary tissue. Supplemented vitamin A tended (P = 0.05) to increase the mRNA abundance of retinol binding protein in the jejunum, but other mRNA abundance for genes (alcohol dehydrogenase class 1, lecithin retinol acyltransferase phosphatidylcholine-retinol O-acyltransferase, and beta-carotene oxygenase 1) were not affected (P > 0.05) by dietary treatments. A diet by time interaction (P = 0.04) was noted for the circovirus sample-to-positive ratio, where vitamin A supplementation had the best ratio compared to other diets. Analyzed titer levels for the circovirus vaccine had an interaction (P < 0.01) for diet by time, where vitamin A supplementation had the highest titer at the end of the study. Thus, pigs supplemented with oxidized beta-carotene had an improved average daily gain over vitamin A supplemented pigs, but pigs supplemented with vitamin A seemed to have an improved immune status.