Login / Signup

An Investigation of the Thermal Transitions and Physical Properties of Semiconducting PDPP4T:PDBPyBT Blend Films.

Barbara HajdukPaweł JarkaTomasz TańskiHenryk BednarskiHenryk JaneczekPaweł GnidaMateusz Fijalkowski
Published in: Materials (Basel, Switzerland) (2022)
This work focuses on the study of thermal and physical properties of thin polymer films based on mixtures of semiconductor polymers. The materials selected for research were poly [2,5-bis(2-octyldodecyl)-pyrrolo [3,4-c]pyrrole-1,4(2H,5H)-dione-3,6-diyl)-alt-(2,2';5',2″;5″,2'''-quater-thiophen-5,5'''-diyl)]-PDPP4T, a p-type semiconducting polymer, and poly(2,5-bis(2-octyldodecyl)-3,6-di(pyridin-2-yl)-pyrrolo [3,4-c]pyrrole-1,4(2H,5H)-dione-alt-2,2'-bithiophene)-PDBPyBT, a high-mobility n-type polymer. The article describes the influence of the mutual participation of materials on the structure, physical properties and thermal transitions of PDPP4T:PDBPyBT blends. Here, for the first time, we demonstrate the phase diagram for PDPP4T:PDBPyBT blend films, constructed on the basis of variable-temperature spectroscopic ellipsometry and differential scanning calorimetry. Both techniques are complementary to each other, and the obtained results overlap to a large extent. Our research shows that these polymers can be mixed in various proportions to form single-phase mixtures with several thermal transitions, three of which with the lowest characteristic temperatures can be identified as glass transitions. In addition, the RMS roughness value of the PDPP4T:PDBPyBT blended films was lower than that of the pure materials.
Keyphrases
  • room temperature
  • ionic liquid
  • physical activity
  • mental health
  • carbon nanotubes
  • molecular docking
  • wastewater treatment
  • staphylococcus aureus
  • cystic fibrosis