Insights to proteomics and metabolomics metal chelation in food crops.
Osikemekha Anthony AnaniInobeme AbelJohn Ovie OlomukoroIkenna Benedict OnyeachuPublished in: Journal of proteins and proteomics (2022)
Metal pollution of water and soil ecosystems has been linked to stress and/or toxicity in plants, thus affecting the quality and productivity of food crops. This condition has further aggravated the essential food demand caused by the increase in the human population. Reports from previous studies have shown that correcting the noxiousness due to metal stress tolerance, requires several modes of action in the systemic, tissue, cellular, physiological, biochemical, and molecular levels in food crops which might be apparent in terms of enhanced productivity. The possible targets of the toxicity impact of metals in food crops are the MG (methylglyoxal) and ROS (reactive oxygen species) which could result in damage to the DNA structure, enzymes inactivation, protein oxidation, and lipids' peroxidation. This current review evaluates insights into proteomics and metabolomics of metal chelation in food crops with special effects on the toxicity, tolerance, and partitioning of metals towards better health. Detailed information on the biochemical and physiological mechanisms of plant stress from metal induction and tolerance was highlighted. The specific information of various tolerance strategies of food crops under trace element toxicity, the function of metabolites, proteins, and food crop hormones in stress tolerance to heavy presences of metal contents in plants is discussed. Information on the partitioning of trace elements in food crops was enlisted. The health benefits and possible risks from the consumption of trace metals in food crops were evaluated followed by recommending the future research directions.