Login / Signup

Mechanisms of glioblastoma replication: Ca2+ flares and Cl- currents.

Yunzhen LiCesar A Sanchez TrivinoAndres HernandezSimone MortalFederica SpadaIlona KrivosheiaNicoletta FrancoRenza SpelatDaniela CesselliIvana ManiniMiran SkrapAnna MeniniFabrizia CescaVincent Torre
Published in: Molecular cancer research : MCR (2024)
Glioblastoma (GBM) is amongst the deadliest types of cancers, with no resolutive cure currently available. GBM cell proliferation in the patient's brain is a complex phenomenon controlled by multiple mechanisms. The aim of this study was to determine whether the ionic fluxes controlling cell duplication could represent a target for GBM therapy. In this work, we combined multi-channel Ca2+ and Cl- imaging, optical tweezers, electrophysiology and immunohistochemistry to describe the role of ion fluxes in mediating the cell volume changes that accompany mitosis of U87 GBM cells. We identified three main steps: (i) in round GBM cells undergoing mitosis, during the transition from anaphase to telophase and cytokinesis, large Ca2+ flares occur, reaching values of 0.5-1 µM; (ii) these Ca2+ flares activate Ca2+-dependent Cl- channels, allowing the entry of Cl- ions; (iii) to maintain osmotic balance, GBM cells swell to complete mitosis. This sequence of steps was validated by electrophysiological experiments showing that Cl- channels are activated either directly or indirectly by Ca2+, and by additional live-cell imaging experiments. Cl- channel blockers with different molecular structures, such as niflumic acid and carbenoxolone, blocked GBM replication by arresting GBM cells in a round configuration. These results describe the central role of Ca2+ flares and Cl- fluxes during mitosis and show that inhibition of Ca2+-activated Cl- channels blocks GBM replication, opening the way to new approaches for the clinical treatment of GBM. Implications: Our work identifies ionic fluxes occurring during cell division as targets for devising novel therapies for the glioblastoma treatment.
Keyphrases