Login / Signup

Coordination Properties of Hydroxyisophthalic Acids: Topological Correlations, Synthesis, Structural Analysis, and Properties of New Complexes.

Andrey V SokolovAnna V VologzhaninaEkaterina D BarabanovaSergey Yu StefanovichPavel V DorovatovskiiIlya V TaydakovEugeny V Alexandrov
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
Hydroxyisophthalic acids are valuable polytopic ligands for the design of functional materials based on coordination polymers due to the variety of charges and coordination modes they possess. Herein, we describe the synthesis, thermal stability, nonlinear optical (NLO) and spectroscopic properties of five novel coordination compounds, [K2 L(H2 O)2 ], [MgL(H2 O)2 ] ⋅ 3H2 O, [CaL(H2 O)3 ], [SrL(H2 O)3 ] ⋅ H2 O, [BaL(H2 O)(H2 O)5 ], and one salt, (NH4 )2 L ⋅ 2H2 O, with 4,5,6-trihydroxyisophthalic acid (H2 L), which has not been tested in assembling crystalline coordination networks before. The peculiarities of the structural organization of the compounds were analyzed and compared with those for other hydroxyisophthalates. The coordination properties of hydroxyisophthalic acids were studied from the topological point of view, and a comparative topological analysis of coordination and H-bonded networks was performed. Structural correlations revealed in this study could be useful for the design of hydroxyisophthalate-based coordination networks, including porous metal-organic frameworks, proton conductors, and NLO materials.
Keyphrases
  • metal organic framework
  • single cell
  • molecular docking