Ultrasensitive amplification-free detection of circulating miRNA via droplet-based processing of SERS tag-miRNA-magnetic nanoparticle sandwich nanocomplexes on a paper-based electrowetting-on-dielectric platform.
Kai-Hao WangYuan-Yu ChenChih-Hsien WangKeng-Fu HsuLai-Kwan ChauShau-Chun WangYuh-Ling ChenPublished in: The Analyst (2024)
MicroRNAs (miRNAs) have emerged as a promising class of biomarkers for early detection of various cancers, including ovarian cancer. However, quantifying miRNAs in human blood samples is challenging owing to the issues of sensitivity and specificity. In this study, hsa-miR-200a-3p of the miR-200a sub-family, which is a biomarker of ovarian cancer, was used as the analyte to demonstrate the analytical capability of an integrated biosensing platform using an extremely sensitive surface-enhanced Raman scattering (SERS) nanotag-nanoaggregate-embedded beads (NAEBs), magnetic nanoparticles (MNPs), a pair of highly specific locked nucleic acid (LNA) probes, and a semi-automated paper-based electrowetting-on-dielectric (pEWOD) device to provide labor-less and thorough sample cleanup and recovery. A sandwich approach where NAEBs are modified by one LNA-1 probe and MNPs are modified by another LNA-2 probe was applied. Then, the target analyte miRNA-200a-3p was introduced to form a sandwich nanocomplex through hybridization with the pair of LNA probes. The pEWOD device was used to achieve short cleanup time and good recovery of the nanocomplex, bringing the total analysis time to less than 30 min. The detection limit of this approach can reach 0.26 fM through SERS detection. The versatility of this method without the need for RNA extraction from clinical samples is expected to have good potential in detecting other miRNAs.
Keyphrases
- label free
- nucleic acid
- gold nanoparticles
- high throughput
- living cells
- sensitive detection
- magnetic nanoparticles
- loop mediated isothermal amplification
- quantum dots
- small molecule
- real time pcr
- raman spectroscopy
- endothelial cells
- long non coding rna
- single cell
- high resolution
- molecularly imprinted
- risk assessment
- fluorescent probe