Login / Signup

Highly Multiplexed Kinase Profiling in Spleen with Targeted Mass Spectrometry Reveals Kinome Plasticity across Species.

Laura J MarholzJoel D FederspielHyunsuk SuhMireia Fernandez Ocana
Published in: Journal of proteome research (2021)
Early attrition of drug candidates, including kinase inhibitors, often occurs due to issues that arise during preclinical safety and efficacy evaluation. This problem may be exacerbated by the fact that these studies might fail to consider the basic physiological differences that could exist between human patients and animal models. We report the development of a targeted mass spectrometry-based assay capable of monitoring >50 different kinases using peptides conserved in humans and the key preclinical species used in drug development (mouse, rat, dog, and cynomolgus monkey). These methods were then used to profile interspecies kinome variability in spleen with three of the current techniques used in targeted proteomics (MRM, PRM, and IS-PRM). IS-PRM provides the highest number of kinase identifications, and the results indicate that while this initial set of kinases exhibits high correlation between species for this tissue type, distinct species-specific differences do exist, especially within the cyclin-dependent kinase family. An initial screen in two species with the kinase inhibitor dasatinib in competition with the chemoproteomic kinase-binding probe XO44 demonstrated how the targeted methods can be further applied to study species-specific inhibitor occupancy profiles. Understanding such differences could help rationalize the findings of preclinical studies and have major implications for the selection of these animals as models in kinase drug development.
Keyphrases