σS is a master transcription initiation factor that protects bacterial cells from various harmful environmental stresses including antibiotic pressure. Although its mechanism remains unclear, it is known that full activation of σS-mediated transcription requires a σS-specific activator, Crl. In this study, we determined a 3.80 Å cryo-EM structure of an Escherichia coli transcription activation complex (E. coli Crl-TAC) comprising E. coli σS-RNA polymerase (σS-RNAP) holoenzyme, Crl, and a nucleic-acid scaffold. The structure reveals that Crl interacts with domain 2 of σS (σS2) and the RNAP core enzyme, but does not contact promoter DNA. Results from subsequent hydrogen-deuterium exchange mass spectrometry (HDX-MS) indicate that Crl stabilizes key structural motifs within σS2 to promote the assembly of the σS-RNAP holoenzyme and also to facilitate formation of an RNA polymerase-promoter DNA open complex (RPo). Our study demonstrates a unique DNA contact-independent mechanism of transcription activation, thereby defining a previously unrecognized mode of transcription activation in cells.
Keyphrases
- transcription factor
- escherichia coli
- nucleic acid
- mass spectrometry
- circulating tumor
- single molecule
- gene expression
- cell free
- induced apoptosis
- multiple sclerosis
- minimally invasive
- high resolution
- oxidative stress
- cystic fibrosis
- inflammatory response
- signaling pathway
- molecular dynamics simulations
- toll like receptor
- endoplasmic reticulum stress
- biofilm formation
- crystal structure