Structure-based prediction of protein-protein interaction network in rice.
Fangnan SunYaxin DengXiaosong MaYuan LiuLingxia ZhaoShunwu YuLida ZhangPublished in: Genetics and molecular biology (2024)
Comprehensive protein-protein interaction (PPI) maps are critical for understanding the functional organization of the proteome, but challenging to produce experimentally. Here, we developed a computational method for predicting PPIs based on protein docking. Evaluation of performance on benchmark sets demonstrated the ability of the docking-based method to accurately identify PPIs using predicted protein structures. By employing the docking-based method, we constructed a structurally resolved PPI network consisting of 24,653 interactions between 2,131 proteins, which greatly extends the current knowledge on the rice protein-protein interactome. Moreover, we mapped the trait-associated single nucleotide polymorphisms (SNPs) to the structural interactome, and computationally identified 14 SNPs that had significant consequences on PPI network. The protein structural interactome map provided a resource to facilitate functional investigation of PPI-perturbing alleles associated with agronomically important traits in rice.