Dual DNA rulers reveal an 'mRNA looping' intermediate state during ribosome translocation.
Heng YinShoujun XuYuhong WangPublished in: RNA biology (2018)
The precise 3-nucleotide movement of mRNA is critical for translation fidelity. One mRNA translocation error propagates to all of the following codons, which is detrimental to the cell. However, none of the current methods can reveal the mRNA dynamics near the ribosome entry site, which limits the understanding of this important issue. We have developed an assay of dual DNA rulers that provides such capability. By uniquely probing both the 3'- and 5'-ends of mRNA, we observed an antibiotic-trapped intermediate state that is consistent with a ribosomal conformation containing mRNA asymmetric partial displacements at its entry and exit sites. Based on the available ribosome structures and computational simulations, we proposed a 'looped' mRNA conformation, which suggested a stepwise 'inchworm' mechanism for ribosomal translocation. The same 'looped' intermediate state identified with the dual rulers persists with a '-1' frameshifting motif, indicating that the branching point of normal and frameshifting translocations occurs at a later stage of translocation.