Recent Efforts in Understanding and Improving the Nonideal Behaviors of Organic Field-Effect Transistors.
Hio-Ieng UnJie-Yu WangJian PeiPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2019)
Over the past three decades, the mobility of organic field-effect transistors (OFETs) has been improved from 10-5 up to over 10 cm2 V-1 s-1, which reaches or has already satisfied the requirements of demanding applications. However, pronounced nonideal behaviors in current-voltage characteristics are commonly observed, which indicates that the reported mobilities may not truly reflect the device properties. Herein, a comprehensive understanding of the origins of several observed nonidealities (downward, upward, double-slope, superlinear, and humped transfer characteristics) is summarized, and how to extract comparatively reliable mobilities from nonideal behaviors in OFETs is discussed. Combining an overview of the ideal and state-of-the-art OFETs, considerable possible approaches are also provided for future OFETs.