Toward a Fast and Highly Responsive SnSe2-Based Photodiode by Exploiting the Mobility of the Counter Semiconductor.
Emma P MukhokosiBasanta RoulSaluru B KrupanidhiKaruna Kar NandaPublished in: ACS applied materials & interfaces (2019)
In photodetection, the response time is mainly controlled by the device architecture and electron/hole mobility, while the absorption coefficient and the effective separation of the electrons/holes are the key parameters for high responsivity. Here, we report an approach toward the fast and highly responsive infrared photodetection using an n-type SnSe2 thin film on a p-Si(100) substrate keeping the overall performance of the device. The I- V characteristics of the device show a rectification ratio of ∼147 at ±5 V and enhanced optoelectronic properties under 1064 nm radiation. The responsivity is 0.12 A/W at 5 V, and the response/recovery time constants were estimated as ∼57 ± 25/34 ± 15 μs, respectively. Overall, the response times are shown to be controlled by the mobility of the constituent semiconductors of a photodiode. Further, our findings suggest that n-SnSe2 can be integrated with well-established Si technology with enhanced optoelectronic properties and also pave the way in the design of fast response photodetectors for other wavelengths as well.