Login / Signup

Development of a fully automated low-pressure [11 C]CO carbonylation apparatus.

Mélodie FerratYoussef El KhouryPeter LarsenKenneth DahlChrister HalldinMagnus Schou
Published in: Journal of labelled compounds & radiopharmaceuticals (2020)
[11 C]carbon monoxide ([11 C]CO) is a versatile synthon for radiolabeling of drug-like molecules for imaging studies with positron emission tomography (PET). We here report the development of a novel, user-friendly, fully automated, and good manufacturing practice (GMP) compliant low-pressure synthesis module for 11 C-carbonylation reactions using [11 C]CO. In this synthesis module, [11 C]CO was reliably prepared from cyclotron-produced [11 C]carbon dioxide ([11 C]CO2 ) by reduction over heated molybdenum and delivered to the reaction vessel within 7 min after end of bombardment, with an overall radiochemical yield (RCY) of 71%. [11 C]AZ13198083, a histamine type-3 receptor ligand, was used as a model compound to assess the functionality of the radiochemistry module. At full batch production conditions (55 μA, 30 min), our newly developed low-pressure 11 C-carbonylation apparatus enabled us to prepare [11 C]AZ13198083 in an isolated radioactivity of 8540 ± 1400 MBq (n = 3). The radiochemical purity of each of the final formulated batches exceeded 99%, and all other quality control tests results conformed with specifications typically set for carbon-11 labeled radiopharmaceuticals. In conclusion, this novel radiochemistry system offers a convenient GMP compliant production drugs and radioligands for imaging studies in human subjects.
Keyphrases