Investigating changes in estuarine ecosystem functioning under future scenarios.
Jenny R HillmanFabrice StephensonSimon F ThrushCarolyn J LundquistPublished in: Ecological applications : a publication of the Ecological Society of America (2020)
Estuaries are subject to disturbance by land-based sediment and nutrient inputs, resulting in changes to the ecosystems and the functions and services that they support. Spatial mapping tools that identify how functional hotspots in the estuary may shift in location and intensity under different disturbance scenarios highlight to managers the trajectory of change and the value of active management and restoration, but to date these tools are only available in the most intensively researched ecosystems. Using empirical data derived from long-term monitoring and multi-habitat field experiments we developed future scenarios representing different impacts of environmental degradation on estuarine ecosystem functions that are important for supporting ecosystem services. We used the spatial prioritization software Zonation in a novel fashion to assess effects of different disturbance scenarios on critical soft-sediment ecosystem processes (nutrient fluxes and sediment erodibility measures) that are influenced by macrofaunal communities and local environment conditions. We compared estimates of current conditions with three scenarios linked to changes in land-use and resulting downstream impacts on estuarine ecosystems to determine how disturbance influences the distribution of high value areas for ecosystem function. Scenarios investigated the implications of habitat degradation associated with sediment deposition and declines in large sediment-dwelling animal abundance whose behavior has important influences on ecosystem function. Our analyses demonstrate decreases in the majority of ecosystem processes under scenarios associated with disturbances. These results suggest that it is important to restore biodiversity and ecosystem function and that the application of Zonation in this context offers a simple, rapid and cost-effective way of identifying priority actions and locations for restoration, and how these shift due to multiple impacts.