Login / Signup

Different perspectives: Spatial ability influences where individuals look on a timed spatial test.

Victoria A RoachGraham M FraserJames H KryklywyDerek G V MitchellTimothy D Wilson
Published in: Anatomical sciences education (2016)
Learning in anatomy can be both spatially and visually complex. Pedagogical investigations have begun exploration as to how spatial ability may mitigate learning. Emerging hypotheses suggests individuals with higher spatial reasoning may attend to images differently than those who are lacking. To elucidate attentional patterns associated with different spatial ability, eye movements were measured in individuals completing a timed electronic mental rotation test (EMRT). The EMRT was based on the line drawings of Shepherd and Metzler. Individuals deduced whether image pairs were rotations (same) or mirror images (different). It was hypothesized that individuals with high spatial ability (HSA) would demonstrate shorter average fixation durations during problem solving and attend to different features of the EMRT than low spatial ability (LSA) counterparts. Moreover, question response accuracy would be associated with fewer fixations and shorter average response times, regardless of spatial reasoning ability. Average fixation duration in the HSA group was shorter than LSA (F(1,8) = 7.99; P = 0.022). Importantly, HSA and LSA individuals looked to different regions of the EMRT images (Fisher Exact Test: 12.47; P = 0.018); attending to the same locations only 34% of the time. Correctly answered questions were characterized by fewer fixations per question (F(1, 8) = 18.12; P = 0.003) and shorter average response times (F(1, 8) = 23.89; P = 0.001). The results indicate that spatial ability may influence visual attention to salient areas of images and this may be key to problem solving processes for low spatial individuals. Anat Sci Educ 10: 224-234. © 2016 American Association of Anatomists.
Keyphrases
  • deep learning
  • convolutional neural network
  • mental health
  • machine learning