Login / Signup

A Modular and Catalytic Methodology To Access 2,5-Furan-Based Phenylene/Thiophene Oligomers through a One-Pot Decarboxylative Cross-Coupling from 5-Bromofurfural.

Brandon CiganaVictoria LapointeMarek B MajewskiPat Forgione
Published in: The Journal of organic chemistry (2024)
A library of 2,5-furan-based phenylene/thiophene oligomers were synthesized starting from 5-bromofurfural, a derivative of biomass-derived furfural. Varied electronic groups are coupled onto the furan motif, followed by the installation of a phenylene or thiophene central linker through a one-pot Pd-catalyzed decarboxylative cross-coupling reaction. Resulting oligomers containing the furan-phenylene-furan core possess high photoluminescent quantum yields in solution (83-98%), which are crucial for optoelectronic devices. Absorbance and photoluminescence maxima are tuned by changing peripheral functional groups and the center linker coupled onto the furan backbone.
Keyphrases
  • quantum dots
  • wastewater treatment
  • visible light
  • energy transfer
  • water soluble
  • anaerobic digestion
  • chemotherapy induced
  • monte carlo