Login / Signup

Structural stability, dihydrogen bonding, and pressure-induced polymorphic transformations in hydrazine borane.

Rongfeng GuanPan WangYujin JiYouyong LiYang Song
Published in: Physical chemistry chemical physics : PCCP (2023)
Hydrazine borane (N 2 H 4 BH 3 ) has attracted considerable interest as a promising solid-state hydrogen storage material owing to its high hydrogen content and easy preparation. In this work, pressure-induced phase transitions of N 2 H 4 BH 3 were investigated using a combination of vibrational spectroscopy, X-ray diffraction, and density functional theory (DFT) up to 30 GPa. Our results showed that N 2 H 4 BH 3 exhibits remarkable structural stability in a very broad pressure region up to 15 GPa, and then two phase transitions were identified: the first one is from the ambient-pressure Pbcn phase to a Pbca phase near 15 GPa; the second is from the Pbca phase to a Pccn phase near 25 GPa. As revealed by DFT calculations, the unusual stability of N 2 H 4 BH 3 and the late phase transformations were attributed to the pressure-mediated evolutions of dihydrogen bonding frameworks, the compressibility and the enthalpies of the high-pressure polymorphs. Our findings provide new insight into the structures and bonding properties of N 2 H 4 BH 3 that are important for hydrogen storage applications.
Keyphrases
  • density functional theory
  • high resolution
  • molecular dynamics
  • high glucose
  • magnetic resonance
  • mass spectrometry
  • endothelial cells
  • drug induced
  • liquid chromatography