Phosphorous Utilization in Microalgae: Physiological Aspects and Applied Implications.
Rosanna BossaMelania Di ColandreaGiovanna SalbitaniSimona CarfagnaPublished in: Plants (Basel, Switzerland) (2024)
Phosphorus (P) is a fundamental element for life, playing an integral role in cellular metabolism including energy transfer, nucleic acid synthesis, and membrane structure. This nutrient is critical to the physiological ecology in all photosynthetic organisms including eukaryotic microalgae and cyanobacteria. The review, here presented, delves into the intricate mechanisms governing phosphorus acquisition from the environment, its utilization in plant metabolism, and regulation in these photosynthetic microorganisms. Furthermore, it comprehensively explores the strategies employed by microalgae to cope with phosphorus limitation, such as the activation of high-affinity phosphate transporters and the synthesis of phosphorus storage compounds. On the other hand, the ability to consume abundant phosphate makes microalgae exploitable organisms for environmental remediation processes. The knowledge synthesized in this review contributes to the broader understanding of microalgal physiology, offering insights into the ecological and biotechnological implications of phosphorus assimilation in these microorganisms.